Copied to
clipboard

G = C42.137D6order 192 = 26·3

137th non-split extension by C42 of D6 acting via D6/C3=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C42.137D6, C6.872- 1+4, C6.702+ 1+4, C4.4D46S3, C423S37C2, D63Q827C2, (C4×Dic6)⋊43C2, (C2×D4).107D6, (C2×Q8).105D6, C22⋊C4.71D6, C23.9D640C2, (C2×C6).213C24, D6⋊C4.59C22, C2.48(Q8○D12), Dic34D428C2, Dic3⋊Q820C2, C2.72(D46D6), (C2×C12).629C23, (C4×C12).183C22, C23.14D6.5C2, (C6×D4).207C22, C23.8D636C2, (C22×C6).43C23, C23.45(C22×S3), (C6×Q8).122C22, Dic3.11(C4○D4), C23.11D637C2, Dic3.D437C2, C23.23D624C2, C23.16D616C2, Dic3⋊C4.82C22, (C22×S3).93C23, C4⋊Dic3.232C22, C22.234(S3×C23), C38(C22.36C24), (C4×Dic3).213C22, (C2×Dic3).250C23, (C2×Dic6).174C22, C6.D4.50C22, (C22×Dic3).138C22, C2.72(S3×C4○D4), C6.184(C2×C4○D4), (C3×C4.4D4)⋊7C2, (S3×C2×C4).119C22, (C2×C4).191(C22×S3), (C2×C3⋊D4).56C22, (C3×C22⋊C4).60C22, SmallGroup(192,1228)

Series: Derived Chief Lower central Upper central

C1C2×C6 — C42.137D6
C1C3C6C2×C6C2×Dic3C22×Dic3C23.16D6 — C42.137D6
C3C2×C6 — C42.137D6
C1C22C4.4D4

Generators and relations for C42.137D6
 G = < a,b,c,d | a4=b4=c6=1, d2=b2, ab=ba, cac-1=dad-1=ab2, cbc-1=a2b, dbd-1=a2b-1, dcd-1=c-1 >

Subgroups: 528 in 216 conjugacy classes, 93 normal (91 characteristic)
C1, C2, C2, C3, C4, C22, C22, S3, C6, C6, C2×C4, C2×C4, D4, Q8, C23, C23, Dic3, Dic3, C12, D6, C2×C6, C2×C6, C42, C42, C22⋊C4, C22⋊C4, C4⋊C4, C22×C4, C2×D4, C2×D4, C2×Q8, C2×Q8, Dic6, C4×S3, C2×Dic3, C2×Dic3, C3⋊D4, C2×C12, C3×D4, C3×Q8, C22×S3, C22×C6, C42⋊C2, C4×D4, C4×Q8, C4⋊D4, C22⋊Q8, C22.D4, C4.4D4, C4.4D4, C422C2, C4⋊Q8, C4×Dic3, Dic3⋊C4, C4⋊Dic3, D6⋊C4, C6.D4, C4×C12, C3×C22⋊C4, C2×Dic6, S3×C2×C4, C22×Dic3, C2×C3⋊D4, C6×D4, C6×Q8, C22.36C24, C4×Dic6, C423S3, C23.16D6, Dic3.D4, C23.8D6, Dic34D4, C23.9D6, C23.11D6, C23.23D6, C23.14D6, Dic3⋊Q8, D63Q8, C3×C4.4D4, C42.137D6
Quotients: C1, C2, C22, S3, C23, D6, C4○D4, C24, C22×S3, C2×C4○D4, 2+ 1+4, 2- 1+4, S3×C23, C22.36C24, D46D6, S3×C4○D4, Q8○D12, C42.137D6

Smallest permutation representation of C42.137D6
On 96 points
Generators in S96
(1 67 55 23)(2 48 56 86)(3 69 57 19)(4 44 58 88)(5 71 59 21)(6 46 60 90)(7 61 29 17)(8 42 30 80)(9 63 25 13)(10 38 26 82)(11 65 27 15)(12 40 28 84)(14 54 64 94)(16 50 66 96)(18 52 62 92)(20 76 70 32)(22 78 72 34)(24 74 68 36)(31 87 75 43)(33 89 77 45)(35 85 73 47)(37 93 81 53)(39 95 83 49)(41 91 79 51)
(1 79 73 17)(2 42 74 62)(3 81 75 13)(4 38 76 64)(5 83 77 15)(6 40 78 66)(7 67 51 47)(8 24 52 86)(9 69 53 43)(10 20 54 88)(11 71 49 45)(12 22 50 90)(14 58 82 32)(16 60 84 34)(18 56 80 36)(19 93 87 25)(21 95 89 27)(23 91 85 29)(26 70 94 44)(28 72 96 46)(30 68 92 48)(31 63 57 37)(33 65 59 39)(35 61 55 41)
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)(49 50 51 52 53 54)(55 56 57 58 59 60)(61 62 63 64 65 66)(67 68 69 70 71 72)(73 74 75 76 77 78)(79 80 81 82 83 84)(85 86 87 88 89 90)(91 92 93 94 95 96)
(1 25 73 93)(2 30 74 92)(3 29 75 91)(4 28 76 96)(5 27 77 95)(6 26 78 94)(7 31 51 57)(8 36 52 56)(9 35 53 55)(10 34 54 60)(11 33 49 59)(12 32 50 58)(13 67 81 47)(14 72 82 46)(15 71 83 45)(16 70 84 44)(17 69 79 43)(18 68 80 48)(19 41 87 61)(20 40 88 66)(21 39 89 65)(22 38 90 64)(23 37 85 63)(24 42 86 62)

G:=sub<Sym(96)| (1,67,55,23)(2,48,56,86)(3,69,57,19)(4,44,58,88)(5,71,59,21)(6,46,60,90)(7,61,29,17)(8,42,30,80)(9,63,25,13)(10,38,26,82)(11,65,27,15)(12,40,28,84)(14,54,64,94)(16,50,66,96)(18,52,62,92)(20,76,70,32)(22,78,72,34)(24,74,68,36)(31,87,75,43)(33,89,77,45)(35,85,73,47)(37,93,81,53)(39,95,83,49)(41,91,79,51), (1,79,73,17)(2,42,74,62)(3,81,75,13)(4,38,76,64)(5,83,77,15)(6,40,78,66)(7,67,51,47)(8,24,52,86)(9,69,53,43)(10,20,54,88)(11,71,49,45)(12,22,50,90)(14,58,82,32)(16,60,84,34)(18,56,80,36)(19,93,87,25)(21,95,89,27)(23,91,85,29)(26,70,94,44)(28,72,96,46)(30,68,92,48)(31,63,57,37)(33,65,59,39)(35,61,55,41), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72)(73,74,75,76,77,78)(79,80,81,82,83,84)(85,86,87,88,89,90)(91,92,93,94,95,96), (1,25,73,93)(2,30,74,92)(3,29,75,91)(4,28,76,96)(5,27,77,95)(6,26,78,94)(7,31,51,57)(8,36,52,56)(9,35,53,55)(10,34,54,60)(11,33,49,59)(12,32,50,58)(13,67,81,47)(14,72,82,46)(15,71,83,45)(16,70,84,44)(17,69,79,43)(18,68,80,48)(19,41,87,61)(20,40,88,66)(21,39,89,65)(22,38,90,64)(23,37,85,63)(24,42,86,62)>;

G:=Group( (1,67,55,23)(2,48,56,86)(3,69,57,19)(4,44,58,88)(5,71,59,21)(6,46,60,90)(7,61,29,17)(8,42,30,80)(9,63,25,13)(10,38,26,82)(11,65,27,15)(12,40,28,84)(14,54,64,94)(16,50,66,96)(18,52,62,92)(20,76,70,32)(22,78,72,34)(24,74,68,36)(31,87,75,43)(33,89,77,45)(35,85,73,47)(37,93,81,53)(39,95,83,49)(41,91,79,51), (1,79,73,17)(2,42,74,62)(3,81,75,13)(4,38,76,64)(5,83,77,15)(6,40,78,66)(7,67,51,47)(8,24,52,86)(9,69,53,43)(10,20,54,88)(11,71,49,45)(12,22,50,90)(14,58,82,32)(16,60,84,34)(18,56,80,36)(19,93,87,25)(21,95,89,27)(23,91,85,29)(26,70,94,44)(28,72,96,46)(30,68,92,48)(31,63,57,37)(33,65,59,39)(35,61,55,41), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72)(73,74,75,76,77,78)(79,80,81,82,83,84)(85,86,87,88,89,90)(91,92,93,94,95,96), (1,25,73,93)(2,30,74,92)(3,29,75,91)(4,28,76,96)(5,27,77,95)(6,26,78,94)(7,31,51,57)(8,36,52,56)(9,35,53,55)(10,34,54,60)(11,33,49,59)(12,32,50,58)(13,67,81,47)(14,72,82,46)(15,71,83,45)(16,70,84,44)(17,69,79,43)(18,68,80,48)(19,41,87,61)(20,40,88,66)(21,39,89,65)(22,38,90,64)(23,37,85,63)(24,42,86,62) );

G=PermutationGroup([[(1,67,55,23),(2,48,56,86),(3,69,57,19),(4,44,58,88),(5,71,59,21),(6,46,60,90),(7,61,29,17),(8,42,30,80),(9,63,25,13),(10,38,26,82),(11,65,27,15),(12,40,28,84),(14,54,64,94),(16,50,66,96),(18,52,62,92),(20,76,70,32),(22,78,72,34),(24,74,68,36),(31,87,75,43),(33,89,77,45),(35,85,73,47),(37,93,81,53),(39,95,83,49),(41,91,79,51)], [(1,79,73,17),(2,42,74,62),(3,81,75,13),(4,38,76,64),(5,83,77,15),(6,40,78,66),(7,67,51,47),(8,24,52,86),(9,69,53,43),(10,20,54,88),(11,71,49,45),(12,22,50,90),(14,58,82,32),(16,60,84,34),(18,56,80,36),(19,93,87,25),(21,95,89,27),(23,91,85,29),(26,70,94,44),(28,72,96,46),(30,68,92,48),(31,63,57,37),(33,65,59,39),(35,61,55,41)], [(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48),(49,50,51,52,53,54),(55,56,57,58,59,60),(61,62,63,64,65,66),(67,68,69,70,71,72),(73,74,75,76,77,78),(79,80,81,82,83,84),(85,86,87,88,89,90),(91,92,93,94,95,96)], [(1,25,73,93),(2,30,74,92),(3,29,75,91),(4,28,76,96),(5,27,77,95),(6,26,78,94),(7,31,51,57),(8,36,52,56),(9,35,53,55),(10,34,54,60),(11,33,49,59),(12,32,50,58),(13,67,81,47),(14,72,82,46),(15,71,83,45),(16,70,84,44),(17,69,79,43),(18,68,80,48),(19,41,87,61),(20,40,88,66),(21,39,89,65),(22,38,90,64),(23,37,85,63),(24,42,86,62)]])

36 conjugacy classes

class 1 2A2B2C2D2E2F 3 4A4B4C4D4E4F4G4H4I4J4K···4O6A6B6C6D6E12A···12F12G12H
order1222222344444444444···46666612···121212
size111144122224444666612···12222884···488

36 irreducible representations

dim1111111111111122222244444
type++++++++++++++++++++--
imageC1C2C2C2C2C2C2C2C2C2C2C2C2C2S3D6D6D6D6C4○D42+ 1+42- 1+4D46D6S3×C4○D4Q8○D12
kernelC42.137D6C4×Dic6C423S3C23.16D6Dic3.D4C23.8D6Dic34D4C23.9D6C23.11D6C23.23D6C23.14D6Dic3⋊Q8D63Q8C3×C4.4D4C4.4D4C42C22⋊C4C2×D4C2×Q8Dic3C6C6C2C2C2
# reps1111211121111111411411222

Matrix representation of C42.137D6 in GL8(𝔽13)

50000000
05000000
00500000
00050000
00000010
0000111211
000012000
000011012
,
00100000
00010000
10000000
01000000
00000100
000012000
0000111211
000012011
,
2120100000
113100000
031110000
10312120000
000061100
000011700
00002259
000011568
,
00580000
00080000
85000000
05000000
0000121212
00000010
000001200
000012011

G:=sub<GL(8,GF(13))| [5,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,1,12,1,0,0,0,0,0,1,0,1,0,0,0,0,1,12,0,0,0,0,0,0,0,11,0,12],[0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,12,1,12,0,0,0,0,1,0,1,0,0,0,0,0,0,0,12,1,0,0,0,0,0,0,11,1],[2,1,0,10,0,0,0,0,12,1,3,3,0,0,0,0,0,3,11,12,0,0,0,0,10,10,1,12,0,0,0,0,0,0,0,0,6,11,2,11,0,0,0,0,11,7,2,5,0,0,0,0,0,0,5,6,0,0,0,0,0,0,9,8],[0,0,8,0,0,0,0,0,0,0,5,5,0,0,0,0,5,0,0,0,0,0,0,0,8,8,0,0,0,0,0,0,0,0,0,0,12,0,0,12,0,0,0,0,12,0,12,0,0,0,0,0,1,1,0,1,0,0,0,0,2,0,0,1] >;

C42.137D6 in GAP, Magma, Sage, TeX

C_4^2._{137}D_6
% in TeX

G:=Group("C4^2.137D6");
// GroupNames label

G:=SmallGroup(192,1228);
// by ID

G=gap.SmallGroup(192,1228);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,224,387,100,1123,346,136,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^6=1,d^2=b^2,a*b=b*a,c*a*c^-1=d*a*d^-1=a*b^2,c*b*c^-1=a^2*b,d*b*d^-1=a^2*b^-1,d*c*d^-1=c^-1>;
// generators/relations

׿
×
𝔽